

Acids & Bases Topic Test

П	im	۵a	Π	OV	VΔ	d
		. –		L		

45 minutes

Instructions

Please ensure you enter your name and circle your teacher's initials below.
Scientific calculators only. Chemistry Data
Sheet will be provided

Name						
ircle)						
NMO	KLD	MXC	,			
	-					

Mark:_____ / 41

1. Consider the following reaction:

$$HCN_{(aq)} + H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + CN^-_{(aq)}$$

Which of the species in the equations shown are acting as bases?

- A. $HCN_{(aq)}$ and $H_2O_{(\ell)}$
- B. $H_2O_{(\ell)}$ and $CN^{-}_{(aq)}$
- C. $CN^{-}_{(aq)}$ and $HCN_{(aq)}$
- D. $HCN_{(aq)}$ and $H_3O^+_{aq)}$
- 2. The conjugate base of the species $H_2PO_4^-$ (ag) is:
 - A. PO₄³⁻ (aq)
 - $\mathsf{B.} \quad \mathsf{H}_{3}\mathsf{PO}_{4(\mathsf{aq})}$
 - C. $H_2PO_4^{-}$ (aq)
 - D. HPO_4^{2-} (aq)
- 3. The strength of an acid is determined by:
 - A. the number of hydrogen atoms in the formula of the acid
 - B. the concentration of the acid
 - C. the degree of ionisation in aqueous solution
 - D. the purity of the acid
- 4. Which species is likely to be **most** abundant in 1 mol L⁻¹ NH₄Cl solution?
 - a) NH₄⁺
 - b) Cl
 - c) NH₃
 - d) H_3O^+
- 5. Which of the following compounds, when dissolved in water, would not form a solution with a pH less than 7?
 - I NH4NO3
 - II Na₂CO₃
 - III Ba(OH)₂
 - IV NH₃
 - a) I only
 - b) I and II
 - c) II and IV
 - d) II, III, and IV

6. The table below lists the pH of 0.00001 molL⁻¹ solutions of four acids:

Acid solution	рН
1	4.0
II	3.5
III	5.0
IV	3.0

The acid that cannot be monoprotic and weak is

- A. I
- B. II
- C. III
- D. IV
- 7. Which of the following solutions will have the lowest pH at 25°C?
 - A. 0.10 mol L⁻¹ H₂SO₄
 - B. 0.05 mol L⁻¹ H₃PO₄
 - C. 0.20 mol L⁻¹ HNO₃
 - D. 0.20 mol L⁻¹ CH₃COOH
- 8. Propanoic acid and benzoic acid are both monoprotic weak acids whose equilibrium constants are listed below:

Propanoic acid $C_3H_7COOH + H_2O \rightleftharpoons H_3O^+ + C_3H_7COO^-$; K = 1.35 x 10⁻⁵

Benzoic acid $C_6H_5COOH + H_2O \rightleftharpoons H_3O^+ + C_6H_5COO^-$; K = 6.31 x 10⁻⁵

Which of the following statements is true?

- A. Benzoic acid is a weaker acid than propanoic acid.
- B. The pH of a 0.100 molL⁻¹ solution of benzoic acid will be higher than that of a 0.100 molL⁻¹ solution of propanoic acid.
- C. The benzoate ion is a stronger base than the propanoate ion.
- D. A 0.100molL⁻¹ solution of benzoic acid will react faster with a piece of magnesium metal than will a 0.100molL⁻¹ solution of propanoic acid with an identical piece of magnesium.
- 9. A substance which can accept and donate a proton is amphiprotic. Which of the following species are amphiprotic?
 - I H₂O
 - II The hydrogencarbonate ion
 - III The hydroxide ion
 - IV The ethanoate ion
 - A. I, II and III only
 - B. I, III and IV only
 - C. II and III only
 - D. all of them

CCGS Year 12 Chemistry 2020 Acids and Bases Test

10. Which of the options below best describes the solutions of the three salts?

	$KC\ell$	Na ₂ SO ₄	NH_4NO_3
A.	neutral	basic	acidic
B.	acidic	acidic	acidic
C.	neutral	acidic	acidic
D.	neutral	basic	basic

END OF SECTION ONE

Section 2: Short Answer	
DOCTION II. DINGE I MICHOL	

Que	stion 1	4 marks
	e a balanced ionic equation and observations for the reaction between ammonium barium hydroxide.	sulfate solution
Equ	ation:	
Obs	ervations:	
	stion 2	6 marks
The	pH of pure water at 90°C is 6.13.	
(a)	What is the K_w , the equilibrium constant for water, at 90°C ? Show all working.	
		(3 marks)
(b)	Using this information determine whether the self ionization of water:	
	$H_2O(\ell) \rightleftharpoons H^+(aq) + OH^-(aq)$	
	is an exothermic or endothermic reaction. Explain your answer.	
		(3 marks)

(Total 32 marks)

Qu	Question 3 6 mai					6 marks
(a)	Chloroethanoic (CH ₂ ClCOOH) is a monoprotic weak acid. A 0.100 molL ⁻¹ solution of chloroethanoic acid has a pH of 1.93 (at 25°C). Calculate the percentage of chloroethanoic molecules that is ionised.					
						(2 marks)
(b)	carbor was us		periment, t 1 whilst ch	he acid used was loroethanoic acid v	the independent va	cids with magnesium ariable. Hydrochloric acid ment 2 . All other
	(i)	The initial rate of	Experimer	nt 2 was:		
			higher	the same	lower	(circle your answer)
		than Experiment	1.			
	(ii)	The mass of the h	ıydrogen pr	oduced was found	to be	
			higher	the same	lower	(circle your answer)
		than in Experime	ent 2.			(2 marks)
						(2 marks)
	(iii)	Explain your response	onse to (i).			

(2 marks)

Question 4	6 marks
(a) What is the pH of 100 mL of 0.001 molL ⁻¹ nitric acid?	
	(1 mark)
	(Tillark)
(b) Calculate the number of moles of H ₃ O ⁺ in the nitric acid in (a).	
(c) Calculate the number of moles of OH ⁻ in 70 mL of 0.001 molL ⁻ 1 potassium hydroxide.	(1 mark)
(a) Calculate the number of melos of our in 10 mz of 6.55 1 mole i potassium nyuroxius.	
	(1 mark)
	, ,
(d) Calculate the pH of the solution produced by mixing the potassium hydroxide and nitric together.	c acid
	(3 marks)

Question 5 10 marks

Benzoic acid is a weak acid and its structure is shown below. A buffer can be made by adding sodium hydroxide solution to benzoic acid.

benzoic acid (C₆H₅COOH)

(a) Write an ionic equation for the neutralization of benzoic acid with sodium hydroxide.

(2 marks)

(b) Adding sodium hydroxide to benzoic acid results in a buffer solution being formed. Using a pH meter, the following graph was produced. Three points A, B and C are marked on the graph.

volume of sodium hdroxide added (mL)

CCGS Year 12 Chemistry 2020 Acids and Bases Test

Point on

Using your knowledge of buffers, complete the table by writing one of the symbols =, > or < in the boxes below.

Concentration of species

	graph			
	А	C ₆ H₅COOH		C ₆ H₅COO -
	В	C ₆ H₅COOH		C ₆ H ₅ COO -
	С	C ₆ H₅COOH		C ₆ H ₅ COO -
				(3 marks)
(c)	Using relev	vant equations and appropria o further change to pH by add	te theory, explain why the pH lition hydroxide ions.	of the mixture at point B is
				(5 marks)